

Welcome to MakiFlow’s documentation!

	License

	Contact

	Model code organizing

	Layers
	Convolutional layers
	ConvLayer

	UpConvLayer

	DepthWiseConvLayer

	SeparableConvLayer

	AtrousConvLayer

	Normalization layers
	BatchNormLayer

	GroupNormLayer

	NormalizationLayer

	InstanceNormLayer

	Tensor manipulation layers

	Other layers
	BiasLayer

	DenseLayer

	ScaleLayer

License

Copyright (c) 2020, MakiResearchTeam

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
Neither the name of the MakiResearchTeam nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contact

If you have any questions, please contact Igor Kilbas via whitemarsstudios@gmail.com.

Model code organizing

	Each model consists of the following components:

	
	main entity

	training modules

	The model package is organized as follows:

	
	
	main_modules

	
	main_module1

	main_module2

	
	training_modules

	
	training_module1

	training_module2

	compile.py - compiles the main modules with the training ones and provides the full model.

Main modules

Each model has the main class entity that provides the basic functionality for working with the model.
It also share the common components that are using by the training modules.

Interface of the main module class:

class ModelBasis(MakiModel):
 def __init__(self, ...)
 # Setting up the variables.
 self._training_vars_are_ready = False
 pass

 def _get_model_info(self):
 # This method is required by the MakiModel interface.
 pass

 # COMMON TRAINING FUNCTIONALITY
 def _prepare_training_vars(self):
 # Setting up the variables, losses, etc
 self._training_vars_are_ready = True
 pass

 def _other_methods_for_the_training_modules(self):
 pass

Training modules

Each training module is responsible for training the model using a certain loss function.
Therefore, its name reflects the employed training loss: LossNameTrainingModule.

Interface of the training module class:

class LossNameTrainingModule(ModelBasis):
 def _prepare_training_vars(self):
 self._lossname_loss_is_built = False
 super()._prepare_training_vars()

 def _build_lossname_loss(self):
 # Code that builds the scalar tensor of the minimized loss.
 lossname_loss = ...
 # This is the method built into the MakiModel.
 # It is used to include the regularization term into the total loss.
 self._final_lossname_loss = self._build_final_loss(lossname_loss)

 def _setup_lossname_inputs(self):
 # Here the necessary placeholder are set up.
 pass

 # This method signature can include other arguments if needed.
 def _minimize_lossname_loss(self, optimizer, global_step):
 if not self._training_vars_are_ready:
 self._prepare_training_vars()

 if not self._lossname_is_built:
 self._setup_lossname_inputs()
 self._build_lossname_loss()
 self._lossname_optimizer = optimizer
 self._lossname_train_op = optimizer.minimize(
 self._final_lossname_loss, var_list=self._trainable_vars, global_step=global_step
)
 self._session.run(tf.variables_initializer(optimizer.variables()))
 self._lossname_loss_is_built = True
 # This is a common utility for printing info messages
 loss_is_built()

 if self._lossname_optimizer != optimizer:
 # This is a common utility for printing info messages
 new_optimizer_used()
 self._lossname_optimizer = optimizer
 self._lossname_train_op = optimizer.minimize(
 self._final_lossname_loss, var_list=self._trainable_vars, global_step=global_step
)
 self._session.run(tf.variables_initializer(optimizer.variables()))

 return self._lossname_train_op

 def fit_lossname(self, ..., optimizer, epochs=1, global_step=None):
 assert (optimizer is not None)
 assert (self._session is not None)

 train_op = self._minimize_abs_loss(optimizer, global_step)
 # Training cycle

You can copy this code a modify accordingly.

compile.py

In this file all the modules are assembled into the final model.

from .training_modules import Lossname1TrainingModule, Lossname2TrainingModule

class Model(Lossname1TrainingModule, Lossname2TrainingModule):
 pass

This model is then used for the one’s purposes.

Layers

Contents

	Layers

	Convolutional layers

	ConvLayer

	UpConvLayer

	DepthWiseConvLayer

	SeparableConvLayer

	AtrousConvLayer

	Normalization layers

	BatchNormLayer

	GroupNormLayer

	NormalizationLayer

	InstanceNormLayer

	Tensor manipulation layers

	Other layers

	BiasLayer

	DenseLayer

	ScaleLayer

Convolutional layers

ConvLayer

	Parameters

	
	kwint

	Kernel width.

	khint

	Kernel height.

	in_fint

	Number of input feature maps. Treat as color channels if this layer
is first one.

	out_fint

	Number of output feature maps (number of filters).

	strideint

	Defines the stride of the convolution.

	paddingstr

	Padding mode for convolution operation. Options: ‘SAME’, ‘VALID’ (case sensitive).

	activationtensorflow function

	Activation function. Set None if you don’t need activation.

	Wnumpy array

	Filter’s weights. This value is used for the filter initialization with pretrained filters.

	bnumpy array

	Bias’ weights. This value is used for the bias initialization with pretrained bias.

	use_biasbool

	Add bias to the output tensor.

	namestr

	Name of this layer.

UpConvLayer

	Parameters

	
	kwint

	Kernel width.

	khint

	Kernel height.

	in_fint

	Number of input feature maps. Treat as color channels if this layer
is first one.

	out_fint

	Number of output feature maps (number of filters).

	sizetuple

	Tuple of two ints - factors of the size of the output feature map.
Example: feature map with spatial dimension (n, m) will produce
output feature map of size (a*n, b*m) after performing up-convolution
with size (a, b).

	paddingstr

	Padding mode for convolution operation. Options: ‘SAME’, ‘VALID’ (case sensitive).

	activationtensorflow function

	Activation function. Set None if you don’t need activation.

	Wnumpy array

	Filter’s weights. This value is used for the filter initialization with pretrained filters.

	bnumpy array

	Bias’ weights. This value is used for the bias initialization with pretrained bias.

	use_biasbool

	Add bias to the output tensor.

Important

Shape is different from normal convolution since it’s required by
transposed convolution. Output feature maps go before input ones.

DepthWiseConvLayer

	Parameters

	
	kwint

	Kernel width.

	khint

	Kernel height.

	in_fint

	Number of input feature maps. Treat as color channels if this layer
is first one.

	multiplierint

	Number of output feature maps equals in_f`*`multiplier.

	strideint

	Defines the stride of the convolution.

	paddingstr

	Padding mode for convolution operation. Options: ‘SAME’, ‘VALID’ (case sensitive).

	activationtensorflow function

	Activation function. Set None if you don’t need activation.

	Wnumpy array

	Filter’s weights. This value is used for the filter initialization with pretrained filters.

	use_biasbool

	Add bias to the output tensor.

	namestr

	Name of this layer.

SeparableConvLayer

	Parameters

	
	kwint

	Kernel width.

	khint

	Kernel height.

	in_fint

	Number of the input feature maps. Treat as color channels if this layer
is first one.

	out_fint

	Number of the output feature maps after pointwise convolution,
i.e. it is depth of the final output tensor.

	multiplierint

	Number of output feature maps after depthwise convolution equals in_f`*`multiplier.

	strideint

	Defines the stride of the convolution.

	paddingstr

	Padding mode for convolution operation. Options: ‘SAME’, ‘VALID’ (case sensitive).

	activationtensorflow function

	Activation function. Set None if you don’t need activation.

	W_dwnumpy array

	Filter’s weights. This value is used for the filter initialization.

	use_biasbool

	Add bias to the output tensor.

	namestr

	Name of this layer.

AtrousConvLayer

	Parameters

	
	kwint

	Kernel width.

	khint

	Kernel height.

	in_fint

	Number of input feature maps. Treat as color channels if this layer
is first one.

	out_fint

	Number of output feature maps (number of filters).

	rateint

	A positive int. The stride with which we sample input values across the height and width dimensions

	strideint

	Defines the stride of the convolution.

	paddingstr

	Padding mode for convolution operation. Options: ‘SAME’, ‘VALID’ (case sensitive).

	activationtensorflow function

	Activation function. Set None if you don’t need activation.

	Wnumpy array

	Filter’s weights. This value is used for the filter initialization with pretrained filters.

	bnumpy array

	Bias’ weights. This value is used for the bias initialization with pretrained bias.

	use_biasbool

	Add bias to the output tensor.

	namestr

	Name of this layer.

Normalization layers

BatchNormLayer

	Batch Normalization Procedure:

	X_normed = (X - mean) / variance
X_final = X*gamma + beta

gamma and beta are defined by the NN, e.g. they are trainable.

	Parameters

	
	Dint

	Number of tensors to be normalized.

	decayfloat

	Decay (momentum) for the moving mean and the moving variance.

	epsfloat

	A small float number to avoid dividing by 0.

	use_gammabool

	Use gamma in batchnorm or not.

	use_betabool

	Use beta in batchnorm or not.

	namestr

	Name of this layer.

	meanfloat

	Batch mean value. Used for initialization mean with pretrained value.

	varfloat

	Batch variance value. Used for initialization variance with pretrained value.

	gammafloat

	Batchnorm gamma value. Used for initialization gamma with pretrained value.

	betafloat

	Batchnorm beta value. Used for initialization beta with pretrained value.

GroupNormLayer

	GroupNormLayer Procedure:

	X_normed = (X - mean) / variance
X_final = X*gamma + beta

There X (as original) have shape [N, H, W, C], but in this operation it will be [N, H, W, G, C // G].
GroupNormLayer normalized input on N and C // G axis.
gamma and beta are learned using gradient descent.

	Parameters

	
	Dint

	Number of tensors to be normalized.

	decayfloat

	Decay (momentum) for the moving mean and the moving variance.

	epsfloat

	A small float number to avoid dividing by 0.

	Gint

	The number of groups that normalized. NOTICE! The number D must be divisible by G without remainder

	use_gammabool

	Use gamma in batchnorm or not.

	use_betabool

	Use beta in batchnorm or not.

	namestr

	Name of this layer.

	meanfloat

	Batch mean value. Used for initialization mean with pretrained value.

	varfloat

	Batch variance value. Used for initialization variance with pretrained value.

	gammafloat

	Batchnorm gamma value. Used for initialization gamma with pretrained value.

beta : float

NormalizationLayer

	NormalizationLayer Procedure:

	X_normed = (X - mean) / variance
X_final = X*gamma + beta

There X have shape [N, H, W, C]. NormalizationLayer normqlized input on N axis
gamma and beta are learned using gradient descent.

	Parameters

	
	Dint

	Number of tensors to be normalized.

	decayfloat

	Decay (momentum) for the moving mean and the moving variance.

	epsfloat

	A small float number to avoid dividing by 0.

	use_gammabool

	Use gamma in batchnorm or not.

	use_betabool

	Use beta in batchnorm or not.

	namestr

	Name of this layer.

	meanfloat

	Batch mean value. Used for initialization mean with pretrained value.

	varfloat

	Batch variance value. Used for initialization variance with pretrained value.

	gammafloat

	Batchnorm gamma value. Used for initialization gamma with pretrained value.

	betafloat

	Batchnorm beta value. Used for initialization beta with pretrained value.

InstanceNormLayer

	InstanceNormLayer Procedure:

	X_normed = (X - mean) / variance
X_final = X*gamma + beta

There X have shape [N, H, W, C]. InstanceNormLayer normalized input on N and C axis
gamma and beta are learned using gradient descent.

	Parameters

	
	Dint

	Number of tensors to be normalized.

	decayfloat

	Decay (momentum) for the moving mean and the moving variance.

	epsfloat

	A small float number to avoid dividing by 0.

	use_gammabool

	Use gamma in batchnorm or not.

	use_betabool

	Use beta in batchnorm or not.

	namestr

	Name of this layer.

	meanfloat

	Batch mean value. Used for initialization mean with pretrained value.

	varfloat

	Batch variance value. Used for initialization variance with pretrained value.

	gammafloat

	Batchnorm gamma value. Used for initialization gamma with pretrained value.

	betafloat

	Batchnorm beta value. Used for initialization beta with pretrained value.

Tensor manipulation layers

ReshapeLayer is used to changes size from some input_shape to new_shape (include batch_size and color dimension).

	Parameters

	
	new_shapelist

	Shape of output object.

	namestr

	Name of this layer.

MulByAlphaLayer is used to multiply input MakiTensor by alpha.

	Parameters

	
	alphaint

	The constant to multiply by.

	namestr

	Name of this layer.

SumLayer is used add input MakiTensors together.

	Parameters

	
	namestr

	Name of this layer.

Concatenates input MakiTensors along certain axis.

	Parameters

	
	axisint

	Dimension along which to concatenate.

	namestr

	Name of this layer.

Adds rows and columns of zeros at the top, bottom, left and right side of an image tensor.

	Parameters

	

	paddinglist

	List the number of additional rows and columns in the appropriate directions.
For example like [[top,bottom], [left,right]]

	namestr

	Name of this layer.

Performs global maxpooling.
NOTICE! The output tensor will be flattened, i.e. will have a shape of [batch size, num features].

Other layers

BiasLayer

BiasLayer adds a bias vector of dimension D to a tensor.

	Parameters

	
	Dint

	Dimension of bias vector.

	namestr

	Name of this layer.

DenseLayer

	Parameters

	
	in_dint

	Dimensionality of the input vector. Example: 500.

	out_dint

	Dimensionality of the output vector. Example: 100.

	activationTensorFlow function

	Activation function. Set to None if you don’t need activation.

	Wnumpy ndarray

	Used for initialization the weight matrix.

	bnumpy ndarray

	Used for initialisation the bias vector.

	use_biasbool

	Add bias to the output tensor.

	namestr

	Name of this layer.

ScaleLayer

ScaleLayer is used to multiply input MakiTensor on init_value, which is trainable variable.

	Parameters

	
	init_valueint

	The initial value which need to multiply by input.

	namestr

	Name of this layer.

Index

API

	Layers
	Convolutional layers
	ConvLayer

	UpConvLayer

	DepthWiseConvLayer

	SeparableConvLayer

	AtrousConvLayer

	Normalization layers
	BatchNormLayer

	GroupNormLayer

	NormalizationLayer

	InstanceNormLayer

	Tensor manipulation layers

	Other layers
	BiasLayer

	DenseLayer

	ScaleLayer

	Models

Convolutional layers

ConvLayer

	Parameters

	
	kwint

	Kernel width.

	khint

	Kernel height.

	in_fint

	Number of input feature maps. Treat as color channels if this layer
is first one.

	out_fint

	Number of output feature maps (number of filters).

	strideint

	Defines the stride of the convolution.

	paddingstr

	Padding mode for convolution operation. Options: ‘SAME’, ‘VALID’ (case sensitive).

	activationtensorflow function

	Activation function. Set None if you don’t need activation.

	Wnumpy array

	Filter’s weights. This value is used for the filter initialization with pretrained filters.

	bnumpy array

	Bias’ weights. This value is used for the bias initialization with pretrained bias.

	use_biasbool

	Add bias to the output tensor.

	namestr

	Name of this layer.

UpConvLayer

	Parameters

	
	kwint

	Kernel width.

	khint

	Kernel height.

	in_fint

	Number of input feature maps. Treat as color channels if this layer
is first one.

	out_fint

	Number of output feature maps (number of filters).

	sizetuple

	Tuple of two ints - factors of the size of the output feature map.
Example: feature map with spatial dimension (n, m) will produce
output feature map of size (a*n, b*m) after performing up-convolution
with size (a, b).

	paddingstr

	Padding mode for convolution operation. Options: ‘SAME’, ‘VALID’ (case sensitive).

	activationtensorflow function

	Activation function. Set None if you don’t need activation.

	Wnumpy array

	Filter’s weights. This value is used for the filter initialization with pretrained filters.

	bnumpy array

	Bias’ weights. This value is used for the bias initialization with pretrained bias.

	use_biasbool

	Add bias to the output tensor.

Important

Shape is different from normal convolution since it’s required by
transposed convolution. Output feature maps go before input ones.

DepthWiseConvLayer

	Parameters

	
	kwint

	Kernel width.

	khint

	Kernel height.

	in_fint

	Number of input feature maps. Treat as color channels if this layer
is first one.

	multiplierint

	Number of output feature maps equals in_f`*`multiplier.

	strideint

	Defines the stride of the convolution.

	paddingstr

	Padding mode for convolution operation. Options: ‘SAME’, ‘VALID’ (case sensitive).

	activationtensorflow function

	Activation function. Set None if you don’t need activation.

	Wnumpy array

	Filter’s weights. This value is used for the filter initialization with pretrained filters.

	use_biasbool

	Add bias to the output tensor.

	namestr

	Name of this layer.

SeparableConvLayer

	Parameters

	
	kwint

	Kernel width.

	khint

	Kernel height.

	in_fint

	Number of the input feature maps. Treat as color channels if this layer
is first one.

	out_fint

	Number of the output feature maps after pointwise convolution,
i.e. it is depth of the final output tensor.

	multiplierint

	Number of output feature maps after depthwise convolution equals in_f`*`multiplier.

	strideint

	Defines the stride of the convolution.

	paddingstr

	Padding mode for convolution operation. Options: ‘SAME’, ‘VALID’ (case sensitive).

	activationtensorflow function

	Activation function. Set None if you don’t need activation.

	W_dwnumpy array

	Filter’s weights. This value is used for the filter initialization.

	use_biasbool

	Add bias to the output tensor.

	namestr

	Name of this layer.

AtrousConvLayer

	Parameters

	
	kwint

	Kernel width.

	khint

	Kernel height.

	in_fint

	Number of input feature maps. Treat as color channels if this layer
is first one.

	out_fint

	Number of output feature maps (number of filters).

	rateint

	A positive int. The stride with which we sample input values across the height and width dimensions

	strideint

	Defines the stride of the convolution.

	paddingstr

	Padding mode for convolution operation. Options: ‘SAME’, ‘VALID’ (case sensitive).

	activationtensorflow function

	Activation function. Set None if you don’t need activation.

	Wnumpy array

	Filter’s weights. This value is used for the filter initialization with pretrained filters.

	bnumpy array

	Bias’ weights. This value is used for the bias initialization with pretrained bias.

	use_biasbool

	Add bias to the output tensor.

	namestr

	Name of this layer.

Normalization layers

BatchNormLayer

	Batch Normalization Procedure:

	X_normed = (X - mean) / variance
X_final = X*gamma + beta

gamma and beta are defined by the NN, e.g. they are trainable.

	Parameters

	
	Dint

	Number of tensors to be normalized.

	decayfloat

	Decay (momentum) for the moving mean and the moving variance.

	epsfloat

	A small float number to avoid dividing by 0.

	use_gammabool

	Use gamma in batchnorm or not.

	use_betabool

	Use beta in batchnorm or not.

	namestr

	Name of this layer.

	meanfloat

	Batch mean value. Used for initialization mean with pretrained value.

	varfloat

	Batch variance value. Used for initialization variance with pretrained value.

	gammafloat

	Batchnorm gamma value. Used for initialization gamma with pretrained value.

	betafloat

	Batchnorm beta value. Used for initialization beta with pretrained value.

GroupNormLayer

	GroupNormLayer Procedure:

	X_normed = (X - mean) / variance
X_final = X*gamma + beta

There X (as original) have shape [N, H, W, C], but in this operation it will be [N, H, W, G, C // G].
GroupNormLayer normalized input on N and C // G axis.
gamma and beta are learned using gradient descent.

	Parameters

	
	Dint

	Number of tensors to be normalized.

	decayfloat

	Decay (momentum) for the moving mean and the moving variance.

	epsfloat

	A small float number to avoid dividing by 0.

	Gint

	The number of groups that normalized. NOTICE! The number D must be divisible by G without remainder

	use_gammabool

	Use gamma in batchnorm or not.

	use_betabool

	Use beta in batchnorm or not.

	namestr

	Name of this layer.

	meanfloat

	Batch mean value. Used for initialization mean with pretrained value.

	varfloat

	Batch variance value. Used for initialization variance with pretrained value.

	gammafloat

	Batchnorm gamma value. Used for initialization gamma with pretrained value.

beta : float

NormalizationLayer

	NormalizationLayer Procedure:

	X_normed = (X - mean) / variance
X_final = X*gamma + beta

There X have shape [N, H, W, C]. NormalizationLayer normqlized input on N axis
gamma and beta are learned using gradient descent.

	Parameters

	
	Dint

	Number of tensors to be normalized.

	decayfloat

	Decay (momentum) for the moving mean and the moving variance.

	epsfloat

	A small float number to avoid dividing by 0.

	use_gammabool

	Use gamma in batchnorm or not.

	use_betabool

	Use beta in batchnorm or not.

	namestr

	Name of this layer.

	meanfloat

	Batch mean value. Used for initialization mean with pretrained value.

	varfloat

	Batch variance value. Used for initialization variance with pretrained value.

	gammafloat

	Batchnorm gamma value. Used for initialization gamma with pretrained value.

	betafloat

	Batchnorm beta value. Used for initialization beta with pretrained value.

InstanceNormLayer

	InstanceNormLayer Procedure:

	X_normed = (X - mean) / variance
X_final = X*gamma + beta

There X have shape [N, H, W, C]. InstanceNormLayer normalized input on N and C axis
gamma and beta are learned using gradient descent.

	Parameters

	
	Dint

	Number of tensors to be normalized.

	decayfloat

	Decay (momentum) for the moving mean and the moving variance.

	epsfloat

	A small float number to avoid dividing by 0.

	use_gammabool

	Use gamma in batchnorm or not.

	use_betabool

	Use beta in batchnorm or not.

	namestr

	Name of this layer.

	meanfloat

	Batch mean value. Used for initialization mean with pretrained value.

	varfloat

	Batch variance value. Used for initialization variance with pretrained value.

	gammafloat

	Batchnorm gamma value. Used for initialization gamma with pretrained value.

	betafloat

	Batchnorm beta value. Used for initialization beta with pretrained value.

Other layers

BiasLayer

BiasLayer adds a bias vector of dimension D to a tensor.

	Parameters

	
	Dint

	Dimension of bias vector.

	namestr

	Name of this layer.

DenseLayer

	Parameters

	
	in_dint

	Dimensionality of the input vector. Example: 500.

	out_dint

	Dimensionality of the output vector. Example: 100.

	activationTensorFlow function

	Activation function. Set to None if you don’t need activation.

	Wnumpy ndarray

	Used for initialization the weight matrix.

	bnumpy ndarray

	Used for initialisation the bias vector.

	use_biasbool

	Add bias to the output tensor.

	namestr

	Name of this layer.

ScaleLayer

ScaleLayer is used to multiply input MakiTensor on init_value, which is trainable variable.

	Parameters

	
	init_valueint

	The initial value which need to multiply by input.

	namestr

	Name of this layer.

Tensor manipulation layers

ReshapeLayer

ReshapeLayer is used to changes size from some input_shape to new_shape (include batch_size and color dimension).

	Parameters

	
	new_shapelist

	Shape of output object.

	namestr

	Name of this layer.

MulByAlphaLayer

MulByAlphaLayer is used to multiply input MakiTensor by alpha.

	Parameters

	
	alphaint

	The constant to multiply by.

	namestr

	Name of this layer.

SumLayer

SumLayer is used add input MakiTensors together.

	Parameters

	
	namestr

	Name of this layer.

ConcatLayer

Concatenates input MakiTensors along certain axis.

	Parameters

	
	axisint

	Dimension along which to concatenate.

	namestr

	Name of this layer.

ZeroPaddingLayer

Adds rows and columns of zeros at the top, bottom, left and right side of an image tensor.

	Parameters

	

	paddinglist

	List the number of additional rows and columns in the appropriate directions.
For example like [[top,bottom], [left,right]]

	namestr

	Name of this layer.

GlobalMaxPoolLayer

Performs global maxpooling.
NOTICE! The output tensor will be flattened, i.e. will have a shape of [batch size, num features].

Models

SSD

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to MakiFlow’s documentation!

 		
 License

 		
 Contact

 		
 Model code organizing

 		
 Main modules

 		
 Training modules

 		
 compile.py

 		
 Layers

 		
 Convolutional layers

 		
 ConvLayer

 		
 UpConvLayer

 		
 DepthWiseConvLayer

 		
 SeparableConvLayer

 		
 AtrousConvLayer

 		
 Normalization layers

 		
 BatchNormLayer

 		
 GroupNormLayer

 		
 NormalizationLayer

 		
 InstanceNormLayer

 		
 Tensor manipulation layers

 		
 Other layers

 		
 BiasLayer

 		
 DenseLayer

 		
 ScaleLayer

_static/ajax-loader.gif

